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I.a. Quantum spin systems
Quantum spin systems are defined on a ‘lattice’, some nice discrete
metric space (�, d), such as Z⌫ with the usual `1 distance.

A useful notion of ‘nice’ is a power law bound on the size of balls:
|Bx(R)|  C (1 + R⌫), for all x 2 �,R � 0.
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From: T.-C. Wei, P. Haghnegahdar, and R. Raussendorf, Phys. Rev. A
90 (2014), 042333
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For each x 2 �, observables are nx ⇥ nx matrices: A{x} = Mnx
(C),

nx � 2.
For finite ⇤ ⇢ �,

A⇤ =
O

x2⇤

A{x}.

For ⇤1 ⇢ ⇤2, A⇤1 is naturally embedded into A⇤2 and therefore we can
define

Aloc =
[

finite ⇤⇢�

A⇤, A� = Aloc
k·k

.

A 2 A⇤ is said to be supported in ⇤, and the support of A is the smallest
⇤ for which this holds.
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A quantum spin model is typically defined in terms of an interaction:
�(X ) = �(X )⇤ 2 AX , for all finite X ⇢ �, and local Hamiltonians

H⇤ =
X

X⇢⇤

�(X ),

Examples: nearest neighbor spin models such as Heisenberg chain, AKLT
models, have � = Z⌫ , �(X ) 6= 0 only for X = {x , y} with d(x , y) = 1.
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Toric Code Hamiltonian (Kitaev 2006):
� = E(Z2), the edges of the square lattice; Ax = C2, for all x 2 �
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Heisenberg dynamics of finite systems:

⌧⇤
t
(A) = U⇤(t)

⇤AU⇤(t), U⇤(t) = e�itH⇤ ,A 2 A⇤.

If the interaction depends on time, t 7! �(X , t) 2 AX , say continuously,
then

d

dt
U⇤(t, s) = �iH⇤(t)U⇤(t, s)

U⇤(s, s) = 1l,

defines cocycles of unitaries U⇤(t, s) and automorphisms
⌧⇤
t,s(A) = U⇤(t, s)⇤AU⇤(t, s).

Alternatively (and more generally if no uniqueness result for the IVP
exists), a solution can be constructed using the Dyson series:

U(t, s) =  +
1X

n=1

(�i)n
Z

t

s

Z
t1

s

· · ·

Z
tn�1

s

H(t1) · · ·H(tn) dtn · · · dt1 .
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Locality, Quasi-Locality, Almost-Locality
Locality is a crucial notion for many-body systems. Observables in Aloc

are called local, those in A� quasi-local.

By construction, for all A 2 A� and any sequence ⇤n " �, there exist
A⇤n

3 An ! A. A concrete sequence of local approximations of any
A 2 A� can be obtained by using the conditional expectations ⇧⇤:

⇧⇤ = idA⇤ ⌦ ⇢ �A�\⇤ , where ⇢ is the tracial state.
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For any f , positive and decreasing to 0, we can define

kAkf = kAk+ sup
n

f (n)�1
kA� ⇧⇤n

(A)k.

Then, Af = {A 2 A�|kAkf < 1} is a Banach *-algebra for this norm
(e.g., Moon-Ogata 2019).

Some authors prefer the notion of almost locality: A 2 A� is almost local,
if A 2 Af for some f decaying faster than any power (Kapustin-Sopenko
2020). The set of all almost local A is a Fréchet *-algebra.
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Lieb-Robinson bounds (Lieb-Robinson, CMP 1972) provide an estimate for
commutators. Due to the following inequalities, they are useful to
measure locality of observables:

kA� ⇧⇤(A)k  sup
B2A�\⇤,kBk=1

k[A,B]k  2kA� ⇧⇤(A)k.
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Telescopic sums: given ⇤n " � and decay function f , A 2 Af , consider
the identity

A = ⇧0(A) +

"
NX

n=1

⇧n(A)� ⇧n�1(A)

#
+ A� ⇧N(A)

Note k⇧n(A)�⇧n�1(A)k  kAkf (f (n) + f (n� 1)). If f is summable, we
obtain an absolutely convergent series for A:

A = ⇧0(A) +
1X

n=1

[⇧n(A)� ⇧n�1(A)].

-At A
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II. Lieb-Robinson bounds
Let F : [0,1) ! (0,1) be decreasing with the properties, for all x , y 2 �

X

z2�

F (d(x , z))F (d(z , y))  (CF )F (d(x , y))

kFk := sup
x2�

X

y2�

F (d(x , y)) < 1

For such F , which are called F -functions, define a norm on interactions:

k�kF = sup
x,y2�

F (d(x , y))�1
X

X ,x,y2X

k�(X )k.

Examples: If � = Z⌫ , F (r) = (1 + r)�⌫0
, for any ⌫0 > ⌫ is an F -function.

In general, if F is an F -function, then so are

F (r)e�ag(r), with a � 0, and g(r) = r✓, ✓ 2 [0, 1], or g(r) = r/(log(1+r))2.

One defines corresponding Banach space of possibly time dependent
interactions: BF , with uniform norm |||�|||

F
;

Ba,✓,Ba,✓(I ),B1
a,✓(I ), I ⇢ R, . . .
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Some useful estimates in terms of F-norms.
X

X⇢f �:
x,y2X

k�(X )k  k�kFF (d(x , y))

X

X⇢f �:
x2X

k�(X )k  kFkk�kF

X

X⇢f �:
X\Y 6=;

k�(X )k  |Y |kFkk�kF

X

X⇢f �:
X\Y 6=;,X\Z 6=;

k�(X )k  |Y ||Z |k�kFF (d(Y ,Z ))

X

X⇢f �:
X\Y 6=;,X\Z 6=;

k�(X )k  k�kF
X

y2Y ,z2Z

F0(d(y , z))e
�ag(d(Y ,Z))

 k�kF min(|Y |, |Z |)kF0ke
�ag(d(Y ,Z))
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For X ⇢ �, @�X is the set spins in X that interact with the complement
of X :

@�X = #{x 2 X |9Y ⇢ �,�(Y ) 6= 0,X \ Y 6= ;,Y \ (� \ X ) 6= ;}.

Theorem (N-Sims-Young, JMP 2019)
Let � 2 BF (I ) and X ,Y finite subsets of � with X \ Y = ;,
A 2 AX ,B 2 AY , and s, t 2 I , we have

��⇥⌧�
t,s(A),B

⇤��  2kAkkBk
⇣
e2

R max(s,t)
min(s,t)

|||�|||
F
(r)dr

� 1
⌘
D(X ,Y )

and the quantity D(X ,Y ) is given by

D(X ,Y ) = min

8
<

:
X

x2X

X

y2@�Y

F (d(x , y)),
X

x2@�X

X

y2Y

F (d(x , y))

9
=

; .

= "" ← ""
"

I
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If F = F0e�g , D can be estimate by

D(X ,Y )  min{|@�X |, |@�Y |}kF0ke
�g(d(X ,Y ))

 min(|X |, |Y |)kF0ke
�g(d(X ,Y ))

For time-independent � 2 BF and F (r) = e�arF0 one easily recovers the
familiar form of the Lieb-Robinson bounds as follows:

��[⌧�
t
(A),B]

��  CkAkkBkmin(|X |, |Y |)ea(vLR |t|�d(X ,Y )),

with
vLR = 2a�1

k�kF , C = 2kF0k1.
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The LRBs is stated without reference to the finite volume ⇤. The
convergence of the limit

⌧�
t,s(A) = lim

⇤!�
⌧�,⇤
t,s (A)

can itself be proved using LRBs for finite-volume dynamics ⌧�,⇤
t,s , and the

infinite-volume dynamics inherits the bounds.

Unless F decays as an exponential this is the only known way to prove
existence of the thermodynamic limit of the dynamics for general
interactions.
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Theorem
Let � 2 BF (�). Along any increasing, exhaustive sequence {⇤n} of finite
subsets of �, the norm limit

⌧�
t
(A) = lim

n!1
⌧�,⇤n

t (A)

exists for all t 2 R and A 2 A
loc
� . The convergence is uniform for t in

compact sets, and the limit it is independent of the choice of exhaustive
sequence {⇤n}. The set {⌧�

t
}t2R defines a strongly continuous

one-parameter group of ⇤-automorphisms of A�.

The same result holds for � 2 BF ([a, b]), but with the group property
replaced by a composition property.
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Applications of LRB and quasi-locality
The use of LRBs to derive and apply quasi-locality properties of quantum
many-body dynamics and related transformations is ubiquitous.

1. Exponential decay of correlations in gaped ground states (N-Sims &
Hastings-Koma, CMP 2006).
2. Stability of the ground state gap. ‘Local Perturbations Perturb
Locally’.
Bravyi-Hastings-Michalakis 2010, 2011, 2013, Bachmann-Michalakis-N-Sims
2012, N-Sims-Young 2019-2020
3. Quantized Hall currents in interacting systems, many-body adiabatic
theorems
Hastings-Michalakis 2015, Bachmann-Bols-DeRoeck-Fraas 2017-2021,
Monaco-Teufel 2019, Henheik-Teufel 2020
4. Robustness of anyon character of excitations in quantum-double
models.
Cha-Naaijkens-N, 2018, 2020
5. Classifying Symmetry Protected Topological (SPT) Phases.
Matsui 2010, Bachmann-Michalakis-N-Sims 2012, Ogata 2018-21, Sopenko
2021, Kapustin-Sopenko-Yang 2021
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The quasi-adiabatic evolution
A key object for many applications is the The quasi-adiabatic evolution
aka spectral flow.

Suppose �0 and �1 are two interactions with an interpolating
di↵erentiable curve �(s), s 2 [0, 1], in a Banach space with su�cient

decay (for concreteness, say, F (r) = F0(r)e�ar
✓

). Then, there is an
equivalent curve of interactions, also denoted by �, that is supported on
balls s.t.

�x(s) :=
X

n�0

�(s, bx(n)) 2 Af ,

for a suitable f of stretched exponential decay.

-
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The Hastings generator of the ‘quasi-adiabatic evolution’ (Hastings 2004,
Hastings-Wen 2005, Bachmann-Michalakis-N-Sims 2012) is defined by the
‘interaction’

 ̃x(s) =

Z 1

�1
wa(t)

Z
t

0
⌧�(s)
u

✓
d

ds
�x(s)

◆
du dt

with wa(t) a specific function of almost exponential decay ⇠ e
� a|t|

(log a|t|)2 ,
with a > 0.

Using LRBs, we can show  ̃x(s) 2 Af , for a stretched exponential f .

Using a telescopic sum and conditional expectations ⇧bx (n), we can

construct a true interaction  2 Ba0,✓, equivalent to  ̃.
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Theorem (Bachmann, Michalakis, N, Sims, 2012)
(i) The automorphisms ↵s for s 2 [0, 1], generated by  (s) with s as the
‘time’-parameter, are a strongly continuous cocycle of quasi-local
automorphisms, satisfying Lieb-Robinson bounds with F of stretched
exponential decay.
(ii) If, in addition, �0 and �1 and the interpolating di↵erentiable curve
�(s) are interactions with a unique gapped ground state !s with gap
� � > 0, and we pick a < 2�/7 in wa, we have !s = !0 � ↵s , s 2 [0, 1].

I Lieb-Robinson bounds are essential to construct true interaction and
to show existence of the thermodynamic limit.

I ↵s inherits any symmetries of the curve �(s).

I Uniqueness of the ground state can be relaxed (see later).

I Decay classes other than stretched exponentials have been
considered.
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