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l.a. Quantum spin systems
Quantum spin systems are defined on a ‘lattice’, some nice discrete

metric space (I, d), such as Z" with the usual ¢! distance.

A useful notion of ‘nice’ is a power law bound on the size of balls:
|B«(R)| < C(1+ R¥), forall xeT,R >0.
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From: T.-C. Wei, P. Haghnegahdar, and R. Raussendorf, Phys. Rev. A
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For each x € I', observables are n, x n, matrices: A,y = M, (C),

n, > 2.
For finite ACT,

Ap = ®A{X}.

xEN

For A1 C Ay, Ap, is naturally embedded into Ap, and therefore we can
define "
-Aloc = U A/\) -AF = Aloc .

finite Acr

R
= A D

A € Ap is said to be supported in A, and the support of A is the smallest

A for which this holds. —_—



A quantum spin model is typically defined in terms of an interaction:
d(X) = d(X)* € Ax, for all finite X C T, and local Hamiltonians

Hy= > ®(X)

Examples: nearest neighbor spin models such as Heisenberg chain, AKLT
models, have ' = Z", ®(X) # 0 only for X = {x,y} with d(x,y) = 1.
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Toric Code Hamiltonian (Kitaev 2006):
[ = £(Z?), the edges of the square lattice; A, = C2, forall x € T




Heisenberg dynamics of finite systems:

MA) = Un(t)*AUA(L), Una(t) = e ™0 A€ Ap.

o
If the interaction depends on time, t — (X, t) € Ax, say continuously,

then

defines cocycles of unitaries Ua(t, s) and automorphisms
m(A) = Un(t, s)*AUA(t, s).

—fH/\(t) U/\(t, S)

Alternatively (and more generally if no uniqueness result for the IVP
exists), a solution can be constructed using the Dyson series:

U(t,s)qp_w+§:(—i)"/st/stl~-~/stn1 H(t1) - H(ty)v dt, - - dty .
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Locality, Quasi-Locality, Almost-Locality
Locality is a crucial notion for many-body systems. Observables in Aj,
are called local, those in Ar quasi-local.

By construction, for all A € Ar and any sequence A, 1 T, there exist
Ap, 2 A — A. A concrete sequence of local approximations of any
A € Ar can be obtained by using the conditional expectations [lMx:

Ma =1ida, ® p [4r,, Where p is the tracial state.
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For any f, positive and decreasing to 0, we can define

1Allr = IA]l +sup F(n)"HA = Ma, (A)l-

—

p— p— p—

Then, Ar = {A € Ar|||Allr < oo} is a Banach *-algebra for this norm
(e.g., Moon-Ogata 2019).

Some authors prefer the notion of almost locality: A € Ar is almost local,
if A€ Af for some f decaying faster than any power (Kapustin-Sopenko
2020). The set of all almost local A is a Fréchet *-algebra.
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Lieb-Robinson bounds (Lieb-Robinson, CMP 1972) provide an estimate for
commutators. Due to the following inequalities, they are useful to
measure locality of observables: ~ A
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Abstract. It is shown that if @ is a finite range interaction of a quantum spin
system, 1 the associated group of time translations, 1, the group of space translations,
and A, B local observables, then

lim || [777,(A), B]| e“®¥=0
lt] =0
Ix|>vje}
whenever v is sufficiently large (v > V,,) where u{v) > 0. The physical content of the statement
is that information can propagate in the system only with a finite group velocity.






13

Telescopic sums: given A, 1T and decay function f, A € Ay, consider
the identity

A=To(A) + |3 M4(A) ~ M1 (A)| + A My(A)

n=1
~Ar A
Note ||M,(A) — Ma—1(A)|| < JJA||l¢(F(n) + f(n—1)). If f is summable, we
obtain an absolutely convergent series for A:

A=Tp(A) + > [Ma(A) = My1(A)].
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Il. Lieb-Robinson bounds
Let F : [0,00) — (0, 00) be decreasing with the properties, for all x,y € T

ZF F(d(z,y)) < (Cr)F(d(x,y))
IFl —supZF (x,y)) < o0
yEF

For such F, which are called F-functions, define a norm on interactions:

I®F = sup F(d(x,y))™" > [®(X)].

x,y €l X, x,y€X

Examples: If [ =7, F(r) = (14 r)~", for any v/ > v is an F-function.
In general, if F is an F-function, then so are

F(r)e 26" with a>0, and g(r) = r? 6 € [0,1], or g(r) = r/(log(14r))%

One defines corresponding Banach space of possibly time dependent
interactions: Br, with uniform norm [|®|| z;
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Some useful estimates in terms of F-norms.
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Yoo e <
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<

[®[lFF(d(x,y))

IF Tl

V1INl

Y[ Zll|®llrF(d(Y, 2))

lolr S° Fo(d(y, z)e2(V:2)

veY,zeZ

]l min(| Y11 Z]) | FoJe=2(4CY-2)
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For X C T, 0pX is the set spins in X that interact with the complement
of X:

OoX = #{x € XY CT,O(Y)£0,XNY #0,Y N(F\ X) # 0}.

Theorem (N-Sims-Young, JMP 2019) &= &, T = [ald

Let & € Be(lY and X, Y finite subsets of [ with X N'Y =),
AEAX,BEAy, ands tel, we have

max(s t)
H._ | < 2llAl1B| (& e 1% — 1) p(x, v)

and the quantity D(X,Y) is given by

D(X,Y)=min< > Y Fd(xy), >, > F(d(x

XEX yEDpY m— " xE€0pX yE€Y
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If F = Fye 8, D can be estimate by
i N4
D(X,Y) < min{|86X|,|06Y|}|Fo|e &€V

< min(|X],|Y])|| Folle~&4X:Y))
R

For time-independent ® € Br and F(r) :f:i’Fo one easily recovers the

familiar form of the Lieb-Robinson bounds™as follows:

172 (A), BI|| < CIIAIIIBIl min(|X], | Y])e2altl a6y,
I

with
vir =2a | ®lr,  C=2||F.
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The LRBs is stated without reference to the finite volume A. The
convergence of the limit

r2.(A) = lim 72(A)

can itself be proved using LRBs for finite-volume dynamics T:)s’/\, and the
infinite-volume dynamics inherits the bounds.

Unless F decays as an exponential this is the only known way to prove
existence of the thermodynamic limit of the dynamics for general
interactions.
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Theorem
Let ® € Br(I'). Along any increasing, exhaustive sequence {A,} of finite
subsets of [', the norm limit
2(A) = lim 2 (A)
n—oo
exists for all t € R and A € A°°. The convergence is uniform for t in
compact sets, and the limit it is independent of the choice of exhaustive

sequence {\,}. The set {7}icr defines a strongly continuous
one-parameter group of x-automorphisms of Ar-.

The same result holds for ® € Bg([a, b]), but with the group property
replaced by a composition property.



£ SRR
= é ;/\i' Cl - <%,SCA>> A s
£ N I
o0 T (-, 7%_@@3) s
O —— _—

s ‘ Saam: H
A= /LZ g) L é (2), (Cégﬂgky 1
P 2 PNy, T

— Z O # &
2% zagon 5




L\



20

Applications of LRB and quasi-locality
The use of LRBs to derive and apply quasi-locality properties of quantum
many-body dynamics and related transformations is ubiquitous.

1. Exponential decay of correlations in gaped ground states (N-Sims &
Hastings-Koma, CMP 2006).

2. Stability of the ground state gap. ‘Local Perturbations Perturb
Locally'.

Bravyi-Hastings-Michalakis 2010, 2011, 2013, Bachmann-Michalakis-N-Sims
2012, N-Sims-Young 2019-2020

3. Quantized Hall currents in interacting systems, many-body adiabatic
theorems

Hastings-Michalakis 2015, Bachmann-Bols-DeRoeck-Fraas 2017-2021,
Monaco-Teufel 2019, Henheik-Teufel 2020

4. Robustness of anyon character of excitations in quantum-double
models.

Cha-Naaijkens-N, 2018, 2020

5. Classifying Symmetry Protected Topological (SPT) Phases.

Matsui 2010, Bachmann-Michalakis-N-Sims 2012, Ogata 2018-21, Sopenko
2021, Kapustin-Sopenko-Yang 2021
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The quasi-adiabatic evolution
A key object for many applications is the The quasi-adiabatic evolution
aka spectral flow.

Suppose ®g and @, are two interactions with an interpolating
differentiable curve ®(s), s € [0, 1], in a Banach space with sufficient

= Y .
decay (for concreteness, say, F(r) = Fo(r)e™2"). Then, there is an
equivalent curve of interactions, also denoted by ®, that is supported on

balls s.t.
Ou(s) =Y (s, bu(n)) € Ay,

n>0

for a suitable f of stretched exponential decay.
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The Hastings generator of the ‘quasi-adiabatic evolution’ (Hastings 2004,
Hastings-Wen 2005, Bachmann-Michalakis-N-Sims 2012) is defined by the

‘interaction’
. [e'e} t d
U, (s) :/ Wa(t)/ 7o) (Cbx(s)) du dt
— 00 0 ds
alt|

with w,(t) a specific function of almost exponential decay ~ e (ezale)? |
with a > 0.

Using LRBs, we can show \TIX(S) € Ay, for a stretched exponential f.

Using a telescopic sum and conditional expectations [, (), we can
construct a true interaction W € By g, equivalent to W.
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Theorem (Bachmann, Michalakis, N, Sims, 2012)

(i) The automorphisms as for s € [0, 1], generated by W(s) with s as the
‘time’-parameter, are a strongly continuous cocycle of quasi-local
automorphisms, satisfying Lieb-Robinson bounds with F of stretched
exponential decay.
(ii) If, in addition, ®y and ®; and the interpolating differentiable curve
®(s) are interactions with a unique gapped ground state ws with gap
>~ >0, and we pick a < 2v/7 in w,, we have ws = wpo s, s € [0,1].

- “<‘\7<§’) AEED = < L), ABY S QP

» Lieb-Robinson bounds are essential to construct true interaction and

to show existence of the thermodynamic limit.

> «s inherits any symmetries of the curve ®(s).
» Uniqueness of the ground state can be relaxed (see later).

» Decay classes other than stretched exponentials have been
considered.



