## Locality, Quantum Many-Body Dynamics, and Gapped Ground State Phases.

Bruno Nachtergaele (UC Davis)

## Outline

- I. Locality in quantum lattice systems
- II. Lieb-Robinson bounds and infinite system dynamics
- III. The quasi-adiabatic evolution
- IV. Gapped ground state phases
- V. Stability of spectral gaps
- VI. Invariants of gapped phases
I.a. Quantum spin systems

Quantum spin systems are defined on a 'lattice', some nice discrete metric space ( $\Gamma, d$ ), such as $\mathbb{Z}^{\nu}$ with the usual $\ell^{1}$ distance.

A useful notion of 'nice' is a power law bound on the size of balls: $\left|B_{x}(R)\right| \leq C\left(1+R^{\nu}\right)$, for all $x \in \Gamma, R \geq 0$.


Pentose tiling

Delone:

$$
\begin{array}{ll}
\Gamma \subseteq \mathbb{R}^{v} \quad \exists \quad R_{0}, R_{1}>0 \\
\forall x \in J \quad & B_{x}(R)=\phi \quad \text { if } R<R_{0} \\
& B_{x}(R) \neq \phi \quad \text { if } R>R_{1}
\end{array}
$$



From: T.-C. Wei, P. Haghnegahdar, and R. Raussendorf, Phys. Rev. A 90 (2014), 042333

For each $x \in \Gamma$, observables are $n_{x} \times n_{x}$ matrices: $\mathcal{A}_{\{x\}}=M_{n_{x}}(\mathbb{C})$, $n_{x} \geq 2$.
For finite $\Lambda \subset \Gamma$,

$$
\mathcal{A}_{\Lambda}=\bigotimes_{x \in \Lambda} \mathcal{A}_{\{x\}}
$$

For $\Lambda_{1} \subset \Lambda_{2}, \mathcal{A}_{\Lambda_{1}}$ is naturally embedded into $\mathcal{A}_{\Lambda_{2}}$ and therefore we can define

$$
\mathcal{A}_{\mathrm{loc}}=\bigcup_{\text {finite } \Lambda \subset\ulcorner } \mathcal{A}_{\Lambda}, \quad \underline{\mathcal{A}_{\Gamma}=\overline{\mathcal{A}_{\mathrm{loc}}}\|\cdot\|} .
$$

$$
\overline{A=A_{n} \otimes \Psi_{n}}
$$

$A \in \mathcal{A}_{\Lambda}$ is said to be supported in $\Lambda$, and the support of $A$ is the smallest $\Lambda$ for which this holds.

A quantum spin model is typically defined in terms of an interaction: $\Phi(X)=\Phi(X)^{*} \in \mathcal{A}_{X}$, for all finite $X \subset \Gamma$, and local Hamiltonians

$$
H_{\Lambda}=\sum_{X \subset \Lambda} \Phi(X)
$$

Examples: nearest neighbor spin models such as Heisenberg chain, AKLT models, have $\Gamma=\mathbb{Z}^{\nu}, \Phi(X) \neq 0$ only for $X=\{x, y\}$ with $d(x, y)=1$.

$$
\text { Heisabey model: } H=\sum_{\substack{x, y \\|x-y|=1}} J \bar{S}_{x} \bar{S}_{y} \leftarrow n_{x}, n_{y} \text { spic mivensial matrices. }
$$

AKLT Chain: $\Gamma=\mathbb{Z}, n_{x}=3 \forall x \in \mathbb{Z}$. Spin-1 $p^{(2)}$
PR L $\left.1987 H=\sum_{x} \frac{1}{2} S_{x} \cdot \bar{S}_{x+1}+\frac{1}{6}\left(S_{x} \cdot S_{x+1}\right)^{2}+\frac{1}{3} \pi\right)^{x, x+1}$

Toric Code Hamiltonian (Kitaev 2006):
$\Gamma=\mathcal{E}\left(\mathbb{Z}^{2}\right)$, the edges of the square lattice; $\mathcal{A}_{x}=\mathbb{C}^{2}$, for all $x \in \Gamma$


$$
\begin{aligned}
& H= \sum_{v}\left(\mathbb{1}-A_{v}\right) \\
& \quad+\sum_{f}\left(\mathbb{1}-B_{f}\right) \\
& \frac{A_{v}=}{} \sigma_{w}^{1} \sigma_{x}^{1} \sigma_{y}^{1} \sigma_{z}^{1} \\
& B_{f}= \sigma_{a}^{3} \sigma_{b}^{3} \sigma_{c}^{3} \sigma_{d}^{3}
\end{aligned}
$$

Heisenberg dynamics of finite systems:

$$
\tau_{t}^{\Lambda}(A)=U_{\Lambda}(t)^{*} A U_{\Lambda}(t), \quad U_{\Lambda}(t)=e^{-i t H_{\Lambda}}, A \in \mathcal{A}_{\Lambda} .
$$

If the interaction depends on time, $t \mapsto \Phi(X, t) \in \mathcal{A}_{X}$, say continuously, then

$$
\left.\begin{array}{l}
\frac{d}{d t} \frac{U_{\Lambda}(t, s)}{U_{\Lambda}(s, s)}=-i H_{\Lambda}(t) U_{\Lambda}(t, s)
\end{array}\right\}
$$

defines cocycles of unitaries $U_{\wedge}(t, s)$ and automorphisms $\tau_{t, s}^{\Lambda}(A)=U_{\Lambda}(t, s)^{*} A U_{\Lambda}(t, s)$.
Alternatively (and more generally if no uniqueness result for the IVP exists), a solution can be constructed using the Dyson series:

$$
\begin{aligned}
U(t, s) \psi & =\psi+\sum_{n=1}^{\infty}(-i)^{n} \int_{s}^{t} \int_{s}^{t_{1}} \cdots \int_{s}^{t_{n-1}} H\left(t_{1}\right) \cdots H\left(t_{n}\right) \psi d t_{n} \cdots d t_{1} . \\
& =T\left[\exp \dot{i} \int_{0}^{t} H(s) d s\right] \psi
\end{aligned}
$$

Locality, Quasi-Locality, Almost-Locality
Locality is a crucial notion for many-body systems. Observables in $\mathcal{A}_{\text {lac }}$ are called local, those in $\mathcal{A}_{\Gamma}$ quasi-local.

By construction, for all $A \in \mathcal{A}_{\Gamma}$ and any sequence $\Lambda_{n} \uparrow \Gamma$, there exist $\mathcal{A}_{\Lambda_{n}} \ni A_{n} \rightarrow A$. A concrete sequence of local approximations of any $A \in \mathcal{A}_{\Gamma}$ can be obtained by using the conditional expectations $\Pi_{\Lambda}$ :

$$
\Pi_{\Lambda}=\operatorname{id}_{\mathcal{A}_{\Lambda}} \otimes \rho \upharpoonright_{\mathcal{A}_{\ulcorner\backslash \Lambda}}, \text { where } \rho \text { is the racial state. }
$$

$$
\begin{aligned}
& \operatorname{Tr} A \in \mathbb{C} \Xi \mathbb{C} \mathbb{1}
\end{aligned}
$$

Co all eemitavics in $\theta_{1}$

$$
\begin{aligned}
& c \equiv \int d u u^{*} A u \\
& v^{*} c v=\int d u v^{*} u^{*} A u v \\
&=\int d u v\left(v^{*} u^{d} A u v\right)=c \\
& \Rightarrow \quad C=c \mathbb{1}, c=\operatorname{Tr} A
\end{aligned}
$$

by Schuat Lerma

$$
\begin{aligned}
& \pi_{n}=i_{\wedge} \otimes_{\wedge^{c}}^{a_{r}} \\
& \Rightarrow \forall A \in \theta_{\Gamma}, \quad \pi_{\mu}(A) \in \theta_{\Lambda}
\end{aligned}
$$

$$
\text { Pick } \quad \lambda_{n} \subset \Lambda_{n+1}, \quad \bigcup_{n}=\lambda^{1}
$$

For any $f$, positive and decreasing to 0 , we can define

$$
\|A\|_{f}=\|A\|+\sup _{n} f(n)^{-1}\left\|A-\underline{\Pi_{\Lambda_{n}}(A)}\right\| .
$$

Then, $\mathcal{A}_{f}=\left\{A \in \mathcal{A}_{\Gamma} \mid\|A\|_{f}<\infty\right\}$ is a Banach *-algebra for this norm (e.g., Moon-Ogata 2019).

Some authors prefer the notion of almost locality: $A \in \mathcal{A}_{\Gamma}$ is almost local, if $A \in \mathcal{A}_{f}$ for some $f$ decaying faster than any power (Kapustin-Sopenko 2020). The set of all almost local $A$ is a Fréchet *-algebra.

Lieb-Robinson bounds (Lieb-Robinson, CMP 1972) provide an estimate for commutators. Due to the following inequalities, they are useful to
measure locality of observables:

$$
\begin{aligned}
& A-\pi_{N}(A)=A \int_{\forall\left(\theta_{\Lambda}\right)} d u u^{x} u-\int_{U\left(\theta_{k}\right)} d u u^{*} A u \\
& =\int d u u^{*}[u A-A U] \\
& \left\|\leq \int_{\substack{\sup \\
B,\| \| \|=1\\
}\|[A, B]\|}\right\| u^{+}[A, u]\|=S d u\|[A, U] \|
\end{aligned}
$$



## The Finite Group Velocity of Quantum Spin Systems

Elliott H. Lieb*
Dept. of Mathematics, Massachusetts Institute of Technology Cambridge, Massachusetts, USA

Derek W. Robinson**
Dept. of Physics, Univ. Aix-Marseille II, Marseille-Luminy, France


Received May 15, 1972

[^0]$A \in \theta_{h o u}\left\|\left[\tau_{t}(A), B\right]\right\| \leq C\|A\|\left\|B e^{+a(v(H)-} d(x, y)\right\|$ $B \in \theta_{i=h}$


Telescopic sums: given $\Lambda_{n} \uparrow \Gamma$ and decay function $f, A \in \mathcal{A}_{f}$, consider the identity

$$
\begin{aligned}
& A=\Pi_{0}(A)+\left[\sum_{n=1}^{N} \Pi_{n}(A)-\Pi_{n-1}(A)\right]+A-\Pi_{N}(A) \\
& -\boldsymbol{A}+\boldsymbol{A}
\end{aligned}
$$

Note $\left\|\Pi_{n}(A)-\Pi_{n-1}(A)\right\| \leq\|A\|_{f}(f(n)+f(n-1))$. If $f$ is summable, we obtain an absolutely convergent series for $A$ :

$$
A=\Pi_{0}(A)+\sum_{n=1}^{\infty}\left[\Pi_{n}(A)-\Pi_{n-1}(A)\right] .
$$

## II. Lieb-Robinson bounds

Let $F:[0, \infty) \rightarrow(0, \infty)$ be decreasing with the properties, for all $x, y \in \Gamma$

$$
\begin{aligned}
& \sum_{z \in \Gamma} F(d(x, z)) F(d(z, y)) \leq\left(C_{F}\right) F(d(x, y)) \\
& \|F\|:=\sup _{x \in \Gamma} \sum_{y \in \Gamma} F(d(x, y))<\infty
\end{aligned}
$$

For such $F$, which are called $F$-functions, define a norm on interactions:

$$
\|\Phi\|_{F}=\sup _{x, y \in \Gamma} F(d(x, y))^{-1} \sum_{x, x, y \in X}\|\Phi(X)\| .
$$

Examples: If $\Gamma=\mathbb{Z}^{\nu}, F(r)=(1+r)^{-\nu^{\prime}}$, for any $\nu^{\prime}>\nu$ is an $F$-function. In general, if $F$ is an $F$-function, then so are
$F(r) e^{-a g(r)}$, with $a \geq 0$, and $g(r)=r^{\theta}, \theta \in[0,1]$, or $g(r)=r /(\log (1+r))^{2}$.
One defines corresponding Banach space of possibly time dependent interactions: $\mathcal{B}_{F}$, with uniform norm $\|\Phi\|_{F}$;
$\mathcal{B}_{a, \theta}, \mathcal{B}_{a, \theta}(I), \mathcal{B}_{a, \theta}^{1}(I), I \subset \mathbb{R}, \ldots$

Some useful estimates in terms of F-norms.

$$
\begin{aligned}
& \sum_{\substack{x \subset f\ulcorner\cdot \\
x, y \in X}}\|\Phi(X)\| \leq\|\Phi\|_{F} F(d(x, y)) \\
& \sum_{\substack{x \subset f \Gamma: \\
x \in X}}\|\Phi(X)\| \leq\|F\|\|\Phi\|_{F} \\
& \sum_{\substack{X \subset f\ulcorner \\
X \cap Y \neq \emptyset}}\|\Phi(X)\| \leq|Y|\|F\|\|\Phi\|_{F} \\
& \sum_{\substack{X \subset f \Gamma \\
Y \neq \emptyset, X \cap Z \neq \emptyset}}\|\Phi(X)\| \leq \mid Y\|Z\|\|\Phi\|_{F} F(d(Y, Z)) \\
& \sum_{\substack{X \subset f \Gamma \\
X \cap Y \neq \emptyset, X \cap Z \neq \emptyset}}\|\Phi(X)\| \leq\|\Phi\|_{F} \sum_{y \in Y, z \in Z} F_{0}(d(y, z)) e^{-a g(d(Y, Z))} \\
& \leq\|\Phi\|_{F} \min (|Y|,|Z|)\left\|F_{0}\right\| e^{-a g(d(Y, Z))}
\end{aligned}
$$

For $X \subset \Gamma, \partial_{\Phi} X$ is the set spins in $X$ that interact with the complement of $X$ :

$$
\partial_{\Phi} X=\#\{x \in X \mid \exists Y \subset \Gamma, \Phi(Y) \neq 0, X \cap Y \neq \emptyset, Y \cap(\Gamma \backslash X) \neq \emptyset\} .
$$

Theorem (N-Sims-Young, JMP 2019) $\quad \mathbb{Z}=\mathbb{R}, \quad I=[a, b]$
Let $\Phi \in \mathcal{B}_{F}(I)$ and $X, Y$ finite subsets of $\Gamma$ with $X \cap Y=\emptyset$, $A \in \mathcal{A}_{X}, B \in \mathcal{A}_{\underline{Y}}$, and $s, t \in I$, we have

$$
\begin{aligned}
& = \\
& \left\|\left(\tau_{t, s}^{\Phi}(A), B\right]\right\| \leq 2\|A\|\|B\|\left(e^{2 \int_{\min (s, t)}^{\max (s, t)}\|\Phi\|_{F}(r) d r}-1\right) \\
&
\end{aligned}
$$

and the quantity $D(X, Y)$ is given by

$$
D(X, Y)=\min \left\{\sum_{x \in X} \sum_{y \in \partial_{\Phi} Y} F(d(x, y)), \sum_{x \in \partial_{\Phi} X} \sum_{y \in Y} F(d(x, y))\right\} .
$$

If $F=F_{0} e^{-g}, D$ can be estimate by

$$
\begin{aligned}
D(X, Y) & \leq \min \left\{\left|\partial_{\Phi} X\right|,\left|\partial_{\Phi} Y\right|\right\}\left\|F_{0}\right\| e^{-g(d(X, Y))} \\
& \leq \min (|X|,|Y|)\left\|F_{0}\right\| e^{-g(d(X, Y))}
\end{aligned}
$$

For time-independent $\Phi \in \mathcal{B} \bar{F}$ and $F(r)=e^{-a r} F_{0}$ one easily recovers the familiar form of the Lieb-Robinson bounds $\overline{\text { as follows: }}$

$$
\left\|\left[\tau_{t}^{\Phi}(A), B\right]\right\| \leq C\|A\|\|B\| \min (|X|,|Y|) e^{a\left(v_{L R}|t|-d(X, Y)\right)}
$$

with

$$
v_{L R}=2 a^{-1}\|\Phi\|_{F}, \quad C=2\left\|F_{0}\right\|_{1} .
$$

The LRBs is stated without reference to the finite volume $\Lambda$. The convergence of the limit

$$
\tau_{t, s}^{\Phi}(A)=\lim _{\Lambda \rightarrow \Gamma} \tau_{t, s}^{\Phi, \Lambda}(A)
$$

can itself be proved using LRBs for finite-volume dynamics $\tau_{t, s}^{\Phi, \Lambda}$, and the infinite-volume dynamics inherits the bounds.

Unless $F$ decays as an exponential this is the only known way to prove existence of the thermodynamic limit of the dynamics for general interactions.

## Theorem

Let $\Phi \in \mathcal{B}_{F}(\Gamma)$. Along any increasing, exhaustive sequence $\left\{\Lambda_{n}\right\}$ of finite subsets of $\Gamma$, the norm limit

$$
\tau_{t}^{\Phi}(A)=\lim _{n \rightarrow \infty} \tau_{t}^{\Phi, \Lambda_{n}}(A)
$$

exists for all $t \in \mathbb{R}$ and $A \in \mathcal{A}_{\Gamma}^{\text {loc }}$. The convergence is uniform for $t$ in compact sets, and the limit it is independent of the choice of exhaustive sequence $\left\{\Lambda_{n}\right\}$. The set $\left\{\tau_{t}^{\phi}\right\}_{t \in \mathbb{R}}$ defines a strongly continuous one-parameter group of $*$-automorphisms of $\mathcal{A}_{\Gamma}$.

The same result holds for $\Phi \in \mathcal{B}_{F}([a, b])$, but with the group property replaced by a composition property.

$$
\begin{aligned}
& \text { proof. (up to execcix) } \quad A \in \theta_{\operatorname{loc}} \\
& \left(\tau_{t}^{A_{n}}(A)\right)_{n} \text { is Couclny ; } \forall n>m \\
& \tau_{t}^{\Lambda_{n}}(A)-\tau_{t}^{\Lambda_{m}}(A)=\left.\tau_{s}^{n_{n}} \tau_{t-s}^{\lambda_{m}}(A)\right|_{\theta} ^{t} \\
& =\int_{0}^{t} \frac{d}{d s}\left(\tau^{A_{n}} \cdot \tau_{t-s}^{A_{m}}(A)\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& H_{n}=\sum_{x<a} \Phi(x) \quad \begin{array}{ll}
Z \cap \Lambda_{m} \neq \phi \\
& z \cap\left(\Lambda_{n} \Lambda_{m}\right) \neq \varnothing
\end{array}
\end{aligned}
$$

$E_{x}{ }^{\prime}$

$$
\begin{aligned}
& \mid \tau_{t}^{\lambda}(A)-\tau_{c}^{\lambda_{c}(A)| | \quad A \in Q_{x}} \\
& \leq 2\|A\|\|\Phi\|_{F} e^{2\|t\| \|_{F}} \\
& * \sum_{x \in X} \sum_{y \in \lambda_{n}>\lambda_{m}} F(d(x, y)) \\
& \left.\leq \cdots|x| \sum F(d(x, y))\right\rfloor_{0} \\
& y \in \Gamma \backslash \lambda_{m} \text { or } \lambda_{m} \ngtr \mu \\
& \|F\|=\sup _{x} \sum_{y} F(d(x, y))<+\infty
\end{aligned}
$$

## Applications of LRB and quasi-locality

The use of LRBs to derive and apply quasi-locality properties of quantum many-body dynamics and related transformations is ubiquitous.

1. Exponential decay of correlations in gaped ground states ( N -Sims \& Hastings-Koma, CMP 2006).
2. Stability of the ground state gap. 'Local Perturbations Perturb Locally'.
Bravyi-Hastings-Michalakis 2010, 2011, 2013, Bachmann-Michalakis-N-Sims 2012, N-Sims-Young 2019-2020
3. Quantized Hall currents in interacting systems, many-body adiabatic theorems
Hastings-Michalakis 2015, Bachmann-Bols-DeRoeck-Fraas 2017-2021, Monaco-Teufel 2019, Henheik-Teufel 2020
4. Robustness of anyon character of excitations in quantum-double models.
Cha-Naaijkens-N, 2018, 2020
5. Classifying Symmetry Protected Topological (SPT) Phases.

Matsui 2010, Bachmann-Michalakis-N-Sims 2012, Ogata 2018-21, Sopenko 2021, Kapustin-Sopenko-Yang 2021

## The quasi-adiabatic evolution

A key object for many applications is the The quasi-adiabatic evolution aka spectral flow.

Suppose $\Phi_{0}$ and $\Phi_{1}$ are two interactions with an interpolating differentiable curve $\Phi(s)$, $s \in[0,1]$, in a Banach space with sufficient decay (for concreteness, say, $F(r)=F_{0}(r) e^{-a r^{\theta}}$ ). Then, there is an equivalent curve of interactions, also denoted by $\Phi$, that is supported on balls s.t.

$$
\Phi_{x}(s):=\sum_{n \geq 0} \Phi\left(s, b_{x}(n)\right) \in \mathcal{A}_{f},
$$

for a suitable $f$ of stretched exponential decay.

The Hastings generator of the 'quasi-adiabatic evolution' (Hastings 2004, Hastings-Wen 2005, Bachmann-Michalakis-N-Sims 2012) is defined by the 'interaction'

$$
\tilde{\Psi}_{x}(s)=\int_{-\infty}^{\infty} w_{a}(t) \int_{0}^{t} \tau_{u}^{\Phi(s)}\left(\frac{d}{d s} \Phi_{x}(s)\right) d u d t
$$

with $w_{a}(t)$ a specific function of almost exponential decay $\sim e^{-\frac{a|t|}{(\log a t \mid t)^{2}}}$, with $a>0$.
Using LRBs, we can show $\tilde{\Psi}_{x}(s) \in \mathcal{A}_{f}$, for a stretched exponential $f$. Using a telescopic sum and conditional expectations $\Pi_{b_{x}(n)}$, we can construct a true interaction $\Psi \in \mathcal{B}_{a^{\prime}, \theta}$, equivalent to $\tilde{\Psi}$.

$$
\alpha_{s}=\tau_{s, 0}^{\psi} \quad s \in[0,1]
$$

## Theorem (Bachmann, Michalakis, N, Sims, 2012)

(i) The automorphisms $\alpha_{s}$ for $s \in[0,1]$, generated by $\Psi(s)$ with $s$ as the 'time'-parameter, are a strongly continuous cocycle of quasi-local automorphisms, satisfying Lieb-Robinson bounds with F of stretched exponential decay.
(ii) If, in addition, $\Phi_{0}$ and $\Phi_{1}$ and the interpolating differentiable curve $\Phi(s)$ are interactions with a unique gapped ground state $\omega_{s}$ with gap $\geq \gamma>0$, and we pick $a<2 \gamma / 7$ in $w_{a}$, we have $\omega_{s}=\omega_{0} \circ \alpha_{s}, \quad s \in[0,1]$.

$$
"\left\langle\psi_{0}(s), A \psi_{0}(s)\right\rangle=\left\langle\psi_{0}(0), \alpha_{s}(A) \psi_{0}(0)\right\rangle
$$

- Lieb-Robinson bounds are essential to construct true interaction and to show existence of the thermodynamic limit.
- $\alpha_{s}$ inherits any symmetries of the curve $\Phi(s)$.
- Uniqueness of the ground state can be relaxed (see later).
- Decay classes other than stretched exponential have been considered.


[^0]:    Abstract. It is shown that if $\Phi$ is a finite range interaction of a quantum spin system, $\tau_{t}^{\phi}$ the associated group of time translations, $\tau_{x}$ the group of space translations, and $A, B$ local observables, then

    $$
    \lim _{\substack{|t| \rightarrow \infty \\|x|>v|t|}}\left\|\left[\tau_{t}^{\Phi} \tau_{x}(\mathrm{~A}), \mathrm{B}\right]\right\| \mathrm{e}^{\mu(v) t}=0
    $$

    whenever $v$ is sufficiently large $\left(v>V_{\Phi}\right)$ where $\mu(v)>0$. The physical content of the statement is that information can propagate in the system only with a finite group velocity.

